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GCOS Releases Updated Implementation Plan for the Global 
Observing System for Climate

31 August 2010: The updated version of the Implementation Plan for the Global 
Observing System for Climate in Support of the UNFCCC, including the revised list 
of Global Climate Observing System (GCOS) Essential Climate Variables (ECVs), 
has been published.

The Plan contains 138 recommended actions that include agents for 
implementation, timelines, performance indicators and estimated costs. If fully 
implemented, these actions will substantially improve the availability of the 
observational information needed by all governments to understand, predict, and 
manage their response to climate and climate change.

The 2010 Implementation Plan updates the original version from 2004 and 
considers recent progress in science and technology, an increased focus on 
adaptation, efforts to optimize mitigation and the need for improved projections. The 
additional costs of implementing the plan are estimated at US$2.5 billion. The Plan 
was submitted to the UNFCCC Secretariat for consideration by parties at the 33 rd 
session of the UNFCCC Subsidiary Body for Scientific and Technological Advice 
(SBSTA), which will be held in conjunction with the 16th session of the Conference 
of the Parties (COP 16) in Cancún, Mexico, from 29 November-10 December 2010

read more: http://climate-l.iisd.org/news/gcos-releases-
updated-implementation-plan-for-the-global-observing-system-
for-climate/#more-41116

GCOS reception in community

The impact and reception of GCOs and its ECVs has a much wider impact 
than originally thought (UNFCCC): it is now the key organization stressing the 

importance of observations in climate science
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Figure SPM.10: The relationship between risks from climate change, temperature change, cumulative CO2 emissions, 
and changes in annual GHG emissions by 2050. Limiting risks across Reasons For Concern (panel A) would imply a 
limit for cumulative emissions of CO2 (panel B), which would constrain annual GHG emissions over the next few 
decades (panel C). (A) reproduces the five Reasons For Concern {Box 2.4}. (B) links temperature changes to cumulative 
CO2 emissions (in GtCO2) from 1870. They are based on CMIP5 simulations (pink plume) and on a simple climate 
model (median climate response in 2100), for the baselines and five mitigation scenario categories (six ellipses). Details 
are provided in Figure SPM.5. (C) shows the relationship between the cumulative CO2 emissions (in GtCO2) of the 
scenario categories and their associated change in annual GHG emissions by 2050, expressed in percentage change (in 
percent GtCO2-eq per year) relative to 2010. The ellipses correspond to the same scenario categories as in Panel B, and 
are built with a similar method (see details in Figure SPM.5). {Figure 3.1} 
 
SPM 3.3 Characteristics of adaptation pathways 
 
Adaptation can reduce the risks of climate change impacts, but there are limits to its effectiveness, 
especially with greater magnitudes and rates of climate change. Taking a longer-term perspective, in 
the context of sustainable development, increases the likelihood that more immediate adaptation 
actions will also enhance future options and preparedness. {3.3} 
 
Adaptation can contribute to the well-being of populations, the security of assets, and the maintenance of 
ecosystem goods, functions and services now and in the future. Adaptation is place- and context-specific 
(high confidence). A first step towards adaptation to future climate change is reducing vulnerability and 
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Four Water, GEWEX 
questions

• How can we better understand and predict 
precipitation variability and changes

• How do changes in the land surface and hydrology 
influence past and future changes in water availability  
and security

• How does a warming climate contribute to extremes 
such as drought, floods and heatwaves, and what is the 
role of the land surface in enhancing feedbacks?

• How can we improve the understanding of the balances 
and budgets of energy and water?

Courtesy Graeme Stephens and Sonia Seneviratne
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of approximately 0.05 ppm (Conway et al., 1994; Keeling,
1960). However, because measurements of atmospheric CO2
are made across a spatially heterogeneous network of sites,
errors in quantifying changes in atmospheric concentration
of CO2 may occur. Although it is possible to control for local
contamination by only using background sites located within
the marine boundary layer, errors still arise as a result of
where atmospheric CO2 measurements are made. As the at-
mospheric growth rate of CO2 has increased, the uncertainty
in the growth rate has gone down due to the addition of sam-
pling sites to the global CO2 observing network. Although
recent advances in laser technology have greatly increased
the precision and frequency of gas phase CO2 measurements,
ultimately our ability to resolve changes in atmospheric CO2
concentration and attribute them to regional fluxes may still
be limited by the spatial distribution of sites in the global
CO2 observatory.

1.3 Sources of error in global oceanic pCO2
measurements

Just as sampling errors associated with atmospheric CO2
measurements may lead to uncertainty in our estimates of
the atmospheric growth rate, errors associated with pCO2
measurements and their locations may lead to uncertainty in
estimates of global ocean C uptake. Ocean C uptake is es-
timated as a function of the differences in partial pressure
between the atmosphere and the ocean (1pCO2), as well
as the kinetics of CO2 gas transfer and solubility. Uncer-
tainty in net ocean C uptake is most sensitive to errors in
the long-term pCO2 trend, but other factors such as wind
speed and sea surface temperature that affect the kinetics of
air–sea gas exchange are also important (Wanninkhof et al.,
2013). The partial pressure of CO2 in the ocean is much more
variable than in the overlying atmosphere. Because pCO2
values vary by as much as 100 µatm on seasonal to interan-
nual timescales and become spatially uncorrelated at 102 km,
extrapolating pCO2 values is statistically challenging (Li et
al., 2005). Although statistical techniques for extrapolating
pCO2 and estimating C uptake by the oceans are improv-
ing (e.g., Landschützer et al., 2013; Rödenbeck et al., 2013),
researchers often rely on ocean biogeochemical models to
expand inference to the global scale (Le Quéré et al., 2010,
2013). The largest uncertainty in estimating the net global ex-
change of CO2 between the ocean and the atmosphere is due
to the assumption that pCO2 in the ocean changes at the same
rate as pCO2 in the atmosphere, leading to a time-invariant
1pCO2. However, studies suggest that 1pCO2 is not con-
stant and may have decreased in recent decades in the North
Atlantic, resulting in decreased C uptake (Schuster and Wat-
son, 2007), and may have increased recently in the Pacific,
resulting in increased C uptake (Le Quéré et al., 2010). Diffi-
culties also arise in extrapolating estimates of ocean C uptake
to the Southern Hemisphere where observational constraints
on simulations are sparse (Lenton et al., 2013) and in coastal

Figure 1. Diagram of the global carbon budget in the year 2010.
Major fluxes of C to the atmospheric reservoir of CO2 are from
fossil fuel emissions (FF) and land use land conversion (FL) and
are illustrated as red vectors. Net land (NL) uptake of C from the
reservoir of atmospheric CO2 is illustrated by green vectors and
net ocean uptake (NO) is illustrated by blue vectors. The size of
the vectors is proportional to the mass flux of C as indicated in
petagrams of C per year, where 1 Pg= 1015 g (illustration modified
from Wikimedia Commons). Error estimates for each flux in 2010
are expressed as ±2� .

regions that may be affected by continental delivery of dis-
solved inorganic C or complex upwelling patterns (Dai et al.,
2013). The overall 2� uncertainty in C uptake by the ocean
has been estimated empirically from atmospheric O2 to be
between 1.2 and 1.4 PgC yr�1 (Ishidoya et al., 2012; Man-
ning and Keeling, 2006), which is slightly higher than the 2�
uncertainty of 1.0 PgC yr�1 based on estimates from ocean
biogeochemical models (Le Quéré et al., 2013).

1.4 Sources of uncertainty in estimating fossil fuel
emissions

The greatest contributor to the increase in atmospheric CO2
over the last 50 years is emissions from the combustion of
fossil fuels and cement production (EF), and therefore errors
associated with these emission estimates have the potential
to result in large uncertainties in the global C budget. Global
emissions of fossil fuels have increased significantly during
the last 5 decades, but relative errors of fossil fuel emission
estimates have also increased, leading to a substantial in-
crease in the uncertainty of fossil fuel emissions (Ballantyne
et al., 2012). Although our understanding of sources of error
in fossil fuel emission estimates has greatly improved, emis-
sions are increasing faster in nations with less accurate emis-
sion estimates, thus leading to an increase in both relative
and absolute errors of global fossil fuel emissions (Andres et
al., 2014, 2012). Because fossil fuel emissions are often esti-
mated from energy consumption or production statistics, they
are a fairly well constrained economic variable. Nonetheless,
there are two primary sources of error that lead to uncertain-
ties among and within fossil fuel emission inventories.

www.biogeosciences.net/12/2565/2015/ Biogeosciences, 12, 2565–2584, 2015

Ballantyne et al., 2015
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The “observational gap”

The ability of these data to benchmark global models
depends on extending process-level validation from the
better-sampled to the under-sampled regions, and
given the differences in biotic and abiotic conditions,
this is unlikely to reduce uncertainty sufficiently for
skillful prediction.
The FLUXNET sites span a wide range of variability

in drivers of carbon exchange, but do not sample the full
range of likely variability in rates of carbon exchange.
FLUXNET coverage is severely limited in the high
GPP/high carbon storage tropics, and in the low GPP
but high storage ABZ. Current sampling of the variabil-
ity of ecosystem fluxes is lowest in the regions with
high flux or storage. Extremely low tropical and ABZ
coverage implies near-certain biases, contributing to
uncertainty in model parameterization (Galbraith et al.,
2010; Fisher et al., 2014a,b). Perhaps even more serious,
the ability of such a biased global observing system to
serve as an early warning system for carbon cycle or
ecosystem change may be compromised by low cover-
age in critical regions.
While model development and evaluation have his-

torically focused on in situ data, new remote sensing
technologies are expanding the number of ecosystem
properties that can be quantified from space. Many of
the key stocks and fluxes in Fig. 3 above can, or will
soon, be estimated using remote sensing. Given the
challenges of long-term in situ observations in tropical
and ABZ regions, satellite measurements can make an
increasingly important contribution. Remote sensing
complements the detailed information available in situ
by providing broad spatial and temporal coverage.
Photosynthetic carbon uptake or GPP has been

mapped, somewhat indirectly, from satellite estimates

of light interception using light-use efficiency models
(Sellers et al., 1996), and this product has produced an
increasingly clear view of the distribution of GPP over
the planet, agreeing well spatially with eddy covariance
estimates (Verma et al., 2014). These calculations are
based on the light-use efficiency model where:

GPP ¼ ePARðPAR# FPARÞ ð1Þ

where ePAR is the intrinsic light-use efficiency, FPAR is
the fractional photosynthetically active radiation
absorbed by the canopy and PAR is the incident
amount. Additional terms are typically included to
describe reductions due to stress (water, high tempera-
ture) not captured by the observables. In remote sens-
ing-based approaches, the observables are APAR and
PAR. The actual GPP is constrained by these observa-
tions but can only be calibrated and validated locally
using eddy covariance or other methods (Verma et al.,
2014). These satellite-constrained models of GPP also
show trends (Hasenauer et al. 2012), but the accuracy of
these trends is hard to assess, as few independent data
exist.
A new, related method uses solar-induced fluores-

cence (SIF) to estimate GPP. SIF can be described by:

SIF ¼ eFðPAR# FPARÞ ð2Þ

where eF is the ratio between fluorescence photons
emitted and light absorption. As a result, the two
approaches are related by:

GPP ¼ ePAR

eF
SIF ð3Þ

The combination of SIF and FPAR observations pro-
vides information on both the right-hand side and the

Fig. 3 The two ‘poles’ – tropical and arctic/boreal – of the terrestrial carbon cycle. The modeled distribution of GPP and total (soil plus

vegetation) carbon storage. FLUXNET sampling spans the latitude range of global land, but sampling is sparse in regions with high flux

(GPP) and storage.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12822
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or about 1000 tropical plots globally. As a result, maps
of tropical carbon do not agree more than suggested by
chance and biases could easily be as high as 30% (Mit-
chard et al., 2014). Brazil is developing a new forest
inventory which will bring coverage to about 2 plots
1000 km!2 (de Freitas et al., 2009). Because of the sparse
plot coverage in the tropics, where much of the world’s
forest biomass is concentrated, spaceborne measure-
ments are critical to expand sample sizes and reduce
bias error (Asner et al., 2014a,b; Saatchi et al., 2014).
Repeat space coverage may also be the best means for
assessing long-term changes to forest carbon stocks, if
sufficient accuracy and length of record can be
achieved to enable quantification of change over time.
Despite the significant aboveground biomass concen-
trated in boreal forests, ABZ carbon storage is domi-
nated by vast stocks of soil carbon (Fig. 5). Because
high-latitude carbon storage is dominated by soils
whose dynamics are controlled by the growing season
length and moisture availability, biomass measure-
ments will be a weaker constraint on the ecosystem
model predictions compared to that in the tropics (Kim-
ball et al., 2000; Kim et al., 2012; Barichivich et al., 2013).
Total and soil carbon storage cannot be observed

directly using remote sensing with current or proposed
technology, but aboveground carbon storage (particu-
larly in wood) can be estimated using active remote
sensing techniques from a combination of radar and
light detection and ranging (LiDAR) sensors globally
(Saatchi et al., 2011). Both radar and LiDAR (Lefsky
et al., 2005; Saatchi et al., 2011; Asner et al., 2012) have
proven extremely useful, although each technology has
somewhat different strengths and weaknesses. LiDAR
measurements provide the most direct estimate of for-

est structure and can be used to estimate forest biomass
(Drake et al., 2002; Lefsky et al., 2005; Asner & Mascaro,
2014). Previous spaceborne LiDAR provided systematic
but sparse sampling of the world with high spatial res-
olution (~0.25 ha) (Lefsky et al., 2005), measuring can-
opy height (Simard et al., 2011), which can be related
statistically to biomass (Saatchi et al., 2011; Baccini
et al., 2012). The recently selected GEDI mission could
update this record with optimized LiDAR sampling for
biomass using the International Space Station as a plat-
form.
Radar observations at long wavelengths (20–80 cm)

are sensitive to the amount of biomass present at land-
scape scales (≥1-ha), by indirectly measuring forest
structure (volume and height) (Shugart et al., 2010).
Radar sensors, unlike LiDAR, provide comprehensive
coverage, and because of their ability to penetrate
through clouds, radar sensors complement LiDAR and
will be used for global observation of forest carbon stor-
age and changes from disturbance and recovery pro-
cesses as part of ESA’s Earth Explorer mission concept
(BIOMASS) and NASA’s Decadal Survey mission (pre-
viously called DESDynl-R, now called NISAR) (Hall
et al., 2011; Le Toan et al., 2011).
Remote sensing complements in situ observations by

providing more extensive and less biased sampling,
while in situ calibration and validation are required to
define allometric ratios and wood density. However,
data from spaceborne sensors overcome the statistically
biased sampling of research plots, particularly in tropi-
cal forests where national forest inventory is not avail-
able and substantially reduce or eliminate spatial
undersampling (Asner & Mascaro, 2014; Saatchi et al.,
2014). LiDAR, radar and even in situ sampling

Fig. 5 The distribution of woody (forest and shrub land) area and biomass, estimated by radar–LiDAR fusion compared to data avail-

ability from forest inventory. The red histogram shows forest inventory plot density in plots 1000 km!2. Similar to flux observations,

biomass data is sparse in regions of maximum storage.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12822

6 D. SCHIMEL et al.

Flux sites are located at 
temperate latitudes: GPP 
is largest in the tropics

Inventory sites are located 
at temperate latitudes: 
storage is largest in the 
tropics



Uncertainties in the global 
budget

•The 2σ uncertainties of the 
atmospheric growth rate 
have decreased from 1.2 Pg C 
yr−1 in the 1960s to 0.3 Pg C yr
−1 in the 2000s due to an 
expansion of the atmospheric 
observation network. 

•The 2σ uncertainties in fossil 
fuel emissions have increased 
from 0.3 Pg C yr−1 in the 1960s 
to almost 1.0 Pg C yr−1 during 
the 2000s due to differences in 
national reporting errors and 
differences in energy inventories.

Ballantyne et al., 2015
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direct comparison with other terms in the global C budget,
molar mixing ratios of atmospheric CO2 are converted to a
mass of petagrams (Pg= 1015g) C using the conversion fac-
tor 2.124 PgC ppm�1 (Sarmiento et al., 2010).

2.1.1 Spatial error component of the atmospheric CO2
growth rate

Most of the error associated with calculating the changes in
atmospheric CO2 concentration from year to year is due to
seasonal heterogeneities in the atmospheric mixing of atmo-
spheric CO2 and the spatial unevenness of the global observ-
ing network (http://www.esrl.noaa.gov/gmd/ccgg/). In fact,
through cross-validation of individual sites using the entire
global network (Masarie and Tans, 1995), errors associated
with the sampling network have been estimated to be about
1.2 PgC , which makes it challenging to substantiate annual
growth rates that may only vary between 1 and 2 PgC yr�1
during early parts of the observational record (Ballantyne et
al., 2012; Conway et al., 1994; Keeling et al., 1995).
To assess how much "C varies as a function of the nonran-

dom spatial distribution of the global observation network,
we first subset the global network for “background” sites in
the marine boundary layer (MBL; see Fig. 2) that are less
affected by local anomalies in fossil fuel emissions and up-
take (Masarie and Tans, 1995). To assess how biases in the
MBL network may affect "C , bootstrap simulations were per-
formed by simulating 100 alternative observation networks
consisting of 40 sites that are resampled with replacement
from sites located in the MBL. The only geographic con-
straint on resampling is that at least one site from the trop-
ics, Arctic, Antarctic, North Pacific, and North Atlantic must
be included in each simulated network. Since 1980, d̂Cdt has
been calculated from all 100 simulated observation networks
drawn from the MBL sites.

2.1.2 Temporal error component of the atmospheric
CO2 growth rate

Because complete mixing of atmospheric CO2 may take
more than a year, errors in dC

dt are not independent from
year to year. In fact, errors in MDJ ("MDJ) values show
considerable interannual positive autocorrelation, such that
"MDJ(t) = 0.244 "MDJ(t�1)+0.086"MDJ(t�2)+"(t), where "(t)

represents random error in the current year (Ballantyne et al.,
2012). Because MDJ values that are biased high lead to dC

dt
estimates that are biased high in the previous year and biased
low in the subsequent year, this leads to a negative autocor-
relation, such that "C(t) = �0.413"C(t�1) � 0.166"C(t�2) �
0.085"C(t�3) + "(t). Over the period prior to 1980, d̂Cdt was
calculated from atmospheric CO2 observations at Mauna Loa
and the South Pole (MLOSPO) and "C was estimated from
the "MDJ autocorrelated noise, as described above, normal-
ized to a standard deviation of 0.24 ppm based on the period
of observational overlap between MLOSPO and the MBL.

Figure 2. The global observation network used in calculating the
annual atmospheric CO2 growth rate. The annual growth rate of at-
mospheric CO2 is calculated from resampling sites in the global
network located in the marine boundary layer (black points; top
panel). The annual growth rate since 1980 is calculated from the
entire marine boundary layer, while the growth rate prior to 1980
is calculated from observation sites at Mauna Loa, Hawaii, USA,
and the South Pole, Antarctica. The mean atmospheric growth rate
is illustrated as a thick black line and growth rates calculated from
the 100 simulated sampling networks are illustrated by the thin grey
traces.

Monthly mean MLOSPO values prior to 1974 were calcu-
lated from Scripps Institution of Oceanography data (Keel-
ing et al., 2005), and monthly mean MBL values were calcu-
lated from data collected by the National Oceanic and Atmo-
spheric Administration’s Earth System Research Laboratory
(http://www.esrl.noaa.gov/).

www.biogeosciences.net/12/2565/2015/ Biogeosciences, 12, 2565–2584, 2015
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Figure 3. (A) Global network of CO2 surface stations with flask
sampling (red symbols) and continuous measurement sites (blue
symbols). The data from these sites and from additional stations
can be found at WMO GAW World Data Center for Greenhouse
Gases (http://ds.data.jma.go.jp/gmd/wdcgg/). (B) Locations of the
Total Column Carbon Observing Network by year 2012. These sta-
tions are essential for satellite column CO2 and CH4 measurement
validation. (C) Location of vertical profile sites, where GHG mix-
ing ratios are measured by dedicated aircraft on a typical monthly
basis (pink symbol), and location of passenger instrumented aircraft
program flights CONTRAIL and CARIBIC (blue lines).

America and Europe, the commercialization of environmen-
tal monitoring is a new concept that has to be evaluated over
an extended period. But large gaps in atmospheric observa-
tions still exist in northern Eurasia, Asia, Africa, and South
America because very few research sites exist.
A key element of surface and aircraft in situ atmospheric

observation programs is their unique capability to closely
link all observations to a single CO2 and CH4 dry air mole
fraction scale defined by the WMO. However, while most re-
search groups make a concerted effort to calibrate their mea-
surements to the WMO scale very frequently are obtained
via regular analysis of standard gases. The current situation
is that there is no regulatory quality-assurance system en-
suring the monitoring of the compatibility and traceability
of measurements at each site to the WMO scale. Ongoing
voluntary-based comparisons of both standard gases and en-
vironmental air samples provide means to assess the quality
of linkages between given sites or laboratory measurements
to the international scales. If the effort to link measurements
from multiple networks is to succeed, it is of the utmost im-
portance that observed CO2 and CH4 concentration differ-
ences can be attributed unequivocally to physical processes
(and not to differences in calibration).

3.3.2 Satellite observations of column CO2 and CH4
mixing ratio

Satellite remote sensing of column CO2 and CH4 mixing ra-
tio with global coverage offers options to complete atmo-
spheric observations over regions with too low surface net-
work density (Fig. 4). Progress has been achieved in the
exploitation of existing multipurpose sensors and towards
the design of dedicated GHG satellite instruments. Accu-
rate quantification of regional-scale GHG surface fluxes is
however challenging, as demanding relative accuracy re-
quirements have to be met, especially for CO2 (Bréon and
Ciais, 2009). The initial version of the GOSAT (Greenhouse
gases Observing SATellite) operational total column dry air
mole fraction XCO2 and XCH4 retrieval algorithm suffered
from significant biases and large scatter when compared
to ground-based Total Carbon Column Observing Network
(TCCON) observations, but this has been improved (Yoshida
et al., 2013). Consequently, some preliminary CO2 flux es-
timates have been produced (Maksyutov et al., 2013; Basu
et al., 2013). For methane the situation is better than for
CO2, but satellites still need to be used with in situ data to
infer methane surface fluxes, as shown by Bergamaschi et
al. (2009) using XCH4 retrievals obtained from the SCanning
Imaging Absorption spectroMeter for Atmospheric CHartog-
raphY (SCIAMACHY) together with flask measurements.
Existing/near-launch instruments for column GHG mix-

ing ratios make measurements either in the thermal infrared
spectral domain, with peak sensitivity in the middle tro-
posphere: Atmospheric Infrared Sounder (AIRS), Infrared
Atmospheric Sounding Interferometer (IASI), and Thermal
Emission Spectrometer (TES), Greenhouse gases Observing
SATellite (GOSAT), or in the solar infrared domain: SCIA-
MACHY (2002–2012), Greenhouse Gas Observing Satellite
(GOSAT), Orbiting Carbon Observatory-2 (OCO-2), with a
more uniform sensitivity to CO2 and CH4 throughout the
atmospheric column, including the boundary layer (Fig. 4).
The thermal infrared sounders are not well adapted to infer-
ring surface fluxes as illustrated by Chevallier et al. (2009a),
in contrast to near-infrared sounders. Despite this drawback,
several groups have used thermal infrared sounders to pro-
vide information on column variability (Crevoisier et al.,
2004; Chahine et al., 2008; Xiong et al., 2008).
The precision and accuracy of space-based remotely

sensed GHG column concentration products vary with in-
strument and sampling strategy. Unlike in situ sensors, the
concentrations of gases in the measurement path cannot be
controlled. Thus the direct calibration to the WMO mole
fraction scale cannot be established for space-based GHG
column concentration. An indirect data evaluation can be
made using TCCON total column measurement network
data, which themselves can be evaluated against WMO mole
fraction scale airborne in situ vertical profiles (Wunch et al.,
2010, 2011a). For middle-tropospheric CO2 column abun-
dances from infrared sounders, precision estimates of 1 ppm

www.biogeosciences.net/11/3547/2014/ Biogeosciences, 11, 3547–3602, 2014
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Figure 4. Comparison of land-use–land-change emission inven-
tories from 1960 to 2010. The three inventories compared are
the bookkeeping approach (Houghton et al., 2012; black), model-
derived estimates including historical land use (Stocker et al., 2013:
blue), and model-derived estimates, including historical land use
and nitrogen cycling (Yang et al., 2010; red). Thin grey traces rep-
resent the Monte Carlo simulations of uncertainty for the land use
emission estimates (N = 3⇥ 500= 1500).

sistence value is also arbitrary, it was selected based on the
Food and Agricultural Organization’s forestry statistics that
are updated every 5 years. Therefore, land use emission es-
timates are predicted into the future 4 years and then cor-
rected retroactively in the fifth year (Friedlingstein et al.,
2010). Here we consider three independent estimates of EL
derived from three different approaches: (1) the bookkeep-
ing method based on forestry statistics (Houghton, 1995), (2)
a model-derived estimate based on historical land use maps
(Stocker et al., 2011), and (3) a model-derived estimate in-
cluding historical land use as well as nitrogen cycling (Yang
et al., 2010). Although more EL estimates exist, we have se-
lected three representative estimates of EL covering a range
of possible approaches for inclusion in our error analysis
framework (Fig. 4).

2.4 Estimating net ocean and land uptake with
uncertainty

2.4.1 Estimating net global C uptake

In order to estimate changes in the net global C uptake, we
focused on two diagnostic variables of the global C cycle.
First we calculated net global C uptake by simply rearranging
Eq. (1) to solve for

6N = d̂C
dt

� 6E , (7)

where we calculate net global uptake simply as the difference
between the annual atmospheric growth rate and the sum of
net emission fluxes to the atmosphere. Because we have de-
fined the C mass balance with respect to the atmosphere, a
net loss from the atmosphere corresponds with negative 6N

as a result of increased C uptake by the biosphere. In order to
calculate relative changes in global C uptake efficiency, we
also calculated the airborne fraction (AF), according to

AF = d̂C
dt

/6E, (8)

where an increase in AF would indicate an increase in the
proportion of emissions remaining in the atmosphere and
perhaps diminished C uptake efficiency by the biosphere.
To incorporate the error from different combinations of

our fossil fuel emission simulations (EFX) and our land use
emission simulations (ELX), we devised an emission sce-
nario matrix:

6E(FX,LX) =
"

EF1+ EL1 EF1+ EL2 EF1+ EL3
EF2+ EL1 EF2+ EL2 EF2+ EL3
EF3+ EL1 EF3+ EL2 EF3+ EL3

#

, (9)

where6E(FX,LX) is a flexible framework that can accommo-
date any number of combinations of emission simulations. In
our analysis we only consider three EFX estimates and three
ELX estimates in our 3⇥ 3 matrix for a total of nine differ-
ent combinations of fossil fuel and land use emissions. Each
combination consists of the sum of 500 fossil fuel emission
simulations and 500 land use emission simulations with their
associated spatial and temporal error spanning 52 years (ie.
1959 to 2010), for a grand total of 4500⇥ 52 simulations of
6E(FX,LX) (Fig. 5). In order to calculate6N and AF, we ran-
domly drew from our dCdt simulations to perform 4500 calcu-
lations of 6N and AF spanning the period of 1959 to 2010.
We calculated 6N and AF using two approaches; one using
the sum of all emissions as shown in the emission scenario
matrix (Eq. 9) and the other using just EF simulations to as-
sess how sensitive global C uptake is to these two different
CO2 emission scenarios.

2.4.2 Partitioning C uptake between the land and the
ocean

In order to partition the global net C uptake flux between
net land (i.e., NL) and net ocean (i.e., NO) uptake, we re-
lied on ocean biogeochemical models that have been con-
strained by observations (Le Quéré et al., 2013) . In partic-
ular, these ocean biogeochemical models have been normal-
ized to changes in atmospheric O2 /N2, which provide an
independent estimate of ocean C uptake mostly expressed on
decadal timescales. We extended this logic by using O2 /N2
measurements to estimate the error in estimates of ocean C
uptake in these ocean biogeochemical models:

N̂O = NO ⇥ (1+ "O), (10)
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Table 1.Decadal changes in variables of the global C budget. Reported are decadal means for the atmospheric growth rate, land use emissions,
fossil fuel emissions, global uptake, the airborne fraction, net ocean uptake, and net land uptake. The first number below the mean (in
parentheses) is the mean of the decadal standard deviations that provides a measure of our ability to detect a change in that variable. The
second number below the mean (in parentheses) is the standard deviation of the decadal means that provides a measure of variance in that
variable.

Decadal mean values and standard deviations
Variable 1960s 1970s 1980s 1990s 2000s

Atmospheric CO2 (PgCyr�1; @C/@t) 1.75 2.72 3.42 3.18 4.14
Mean of standard deviations (0.60) (0.61) (0.22) (0.18) (0.16)
Standard deviation of the means (0.61) (0.91) (1.21) (1.40) (0.82)

Land use emissions (PgCyr�1; EL) 1.16 1.28 1.42 1.15 0.89
Mean of standard deviations (0.76) (0.64) (0.65) (0.67) (0.63)
Standard deviation of the means (0.25) (0.11) (0.13) (0.23) (0.12)

Fossil fuel emissions (PgCyr�1; EF) 3.09 4.76 5.53 6.45 7.89
Mean of standard deviations (0.15) (0.24) (0.30) (0.35) (0.47)
Standard deviation of the means (0.44) (0.41) (0.33) (0.24) (0.69)

Net global uptake (PgCyr�1; 6N ) �2.51 �3.32 �3.61 �4.38 �4.64
Mean of standard deviations (0.83) (0.76) (0.52) (0.56) (0.50)
Standard deviation of the means (0.52) (0.84) (1.13) (1.37) (0.98)

Airborne fraction (AF) 0.42 0.45 0.48 0.42 0.47
Mean of standard deviations (0.16) (0.11) (0.05) (0.04) (0.03)
Standard deviation of the means (0.12) (0.14) (0.16) (0.18) (0.10)

Net ocean uptake (PgCyr�1; NO) �1.11 �1.43 �1.79 �2.07 �2.21
Mean of standard deviations (1.31) (1.32) (1.33) (1.35) (1.39)
Standard deviation of the means (0.24) (0.16) (0.06) (0.09) (0.19)

Net land uptake (PgCyr�1; NL) �1.39 �1.89 �1.78 �2.35 �2.46
Mean of standard deviations (1.56) (1.51) (1.43) (1.46) (1.43)
Standard deviation of the means (0.56) (0.90) (1.17) (1.48) (1.06)

all variance in d̂Cdt was slightly reduced when calculated from
only two sites, d̂Cdt estimates show a similar increase in stan-
dard deviation from the 1960s (� = 0.58 PgC yr�1) through
the 1990s (� = 1.26 PgC yr�1). Thus the apparent increase
in carbon cycle variability over the last 50 years seems to
be robust and not an artifact of the expanding global atmo-
spheric CO2 observation network.
In the early part of the observation record, errors associ-

ated with estimating d̂C
dt were one of the main contributors

to uncertainty in calculating global C uptake; however, as
the precision of estimating d̂C

dt has increased, their contribu-
tion to global C uptake uncertainty has been reduced. In fact,
in the 1960s errors in the atmospheric CO2 growth rate ac-
counted for roughly 40% of the uncertainty in global C up-
take; in contrast, in the 2000s errors in the atmospheric CO2
growth rate accounted for only about 10% of the uncertainty
in global C uptake (Fig. 11). Thus, errors in estimating the
annual growth rate at the beginning of the period of obser-

vation (e.g., 1960s) made it difficult to determine if d̂Cdt was
in fact statistically distinguishable from 0 (Fig. 2); however,
continued measurements have revealed that not only is d̂C

dt
positive, but it is clearly accelerating as a result of increased
emissions.

3.2 Increasing uncertainty in fossil fuel emission
estimates

As of 2010, more than 90% of the total CO2 emissions to
the atmosphere were derived from fossil fuel combustion or
cement production (Fig. 1); therefore, slight errors in EF can
have significant impacts on C uptake estimates by the land
and ocean. While fossil fuel emissions have increased by a
factor of 3.6 over the past 50 years, the absolute errors in
fossil fuel emissions have increased by a factor 4.5 over the
same period of time (Fig. 3), suggesting that fossil fuels ac-
count for an increasing proportion of the atmospheric CO2
burden but that the precision of our EF estimates is actually
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While uncertainties in 
growth rate have gone 
done, those in land use 
have remained the same

Ballantyne et al., 2015



• increase the density of in situ networks, in particular 
for stations and aircraft atmospheric observations, 
ocean pCO2 observing systems using Voluntary 
Observing Ships, and eddy covariance terrestrial 
ecosystem flux measurement networks.

• develop space measurements of global CO₂ and 
CH₄ distributions, to fill the gap after GOSAT and 
SCIAMACHY;

• develop spatial scaling techniques for pCO₂ and 
land flux observations for application to wider 
regions, using satellite information;

• undertake a decadal full basin survey of ocean 
carbon state, together with regular inventories of 
forest biomass and soil carbon pools;

The GEO Carbon Strategy



• improve access to a continuous supply of mid-
resolution Earth observing (satellite) data, to monitor 
areas of forest;

• improve access to geospatial and temporal fossil fuel 
emission information, including spatial-data 
infrastructure;

• assemble geospatial information about use of wood 
and food products, and continuously monitored 
dissolved and particulate carbon, if possible with age 
information, for relevant rivers;

• implement a data architecture that facilitates the 
combination of different data-streams;

• establish an International Carbon Office to operate a 
program to produce annually updated regional and 
global carbon budgets.

The GEO Carbon Strategy



From the GEO Carbon Strategy to 
the CEOS response

 DRAFT VERSION 1.1 
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Figure 3. The relationship of remote sensing observations to key GEO ancillary data requirements, core 
GEO observational elements, and the five components of the terrestrial carbon cycle. 
 

2.2.3 Need for Supporting Climate Observations 

While remote sensing observations are critical we underscore the continued need for basic 
climate observations (e.g. precipitation, temperature, wind) that are required drivers for carbon 
modeling efforts. While great progress has been made in creating gridded data sets at regular 
time intervals, as models increase in spatial resolution (from 1 degree to 1 ha) they will require 
climate data at increasingly fine resolutions. Producing such data sets should be a priority for 
without them both diagnostic and prognostic modeling efforts will be limited in their ability to 
capture fine scale heterogeneity in land surface processes. For example, Hurtt et al (2010) have 
shown that coarse scale climate data inputs can cause large errors in carbon flux estimates 
(compared to using fine scale inputs).   
 
2.3  The Role of Satellite Observations 
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Satellite missions for 
CH4 and CO₂ 

Updated from CEOS response to GEO



Atmospheric (over land, sea and ice)
Composition: Carbon dioxide, Methane, and other long-lived greenhouse gases.

Oceanic
Surface: Ocean colour (for biological activity), Carbon dioxide partial pressure, Ocean acidity, 
Sub-surface: Nutrients, Carbon dioxide partial pressure, Ocean acidity, Oxygen, Phytoplankton; Marine 

biodiversity and habitat properties

Terrestrial
Land cover (including vegetation type), Fraction of absorbed photosynthetically active radiation (fAPAR), 
Leaf area index (LAI), Above-ground biomass, Soil carbon, Fire disturbance, Terrestrial biodiversity and 
habitat properties

 Essential Carbon Climate Variables that are both currently 
feasible for global implementation and have a high impact on 

UNFCCC requirements



The new IP

• Better explanation in terms of science and 
convention relevance, can we close the C-
budget, verification purposes?

• Do we need to include fluxes (GPP,…GBP)?

• Evaluate ECV’s to relevance for carbon cycle: 
new ECV fossil fuel emissions?



Hydrological ECVs
• The GCOS ECV framework helps to address the 

energy and water cycle and related science 
questions;

• Global energy and water cycles can be balanced 
within uncertainty of component fluxes;

• It is suggested to extended the GCOS ECV 
framework to essential variables describing E&W 
cycles;

Thanks to Jorg Schulz, EUMESAT



Different perceptions of the 
global water cycle

How an oceanographer sees the water cycle . . . 

RAMSAR, GTOS

Clayson, 2014

Land

Ocean



Energy Cycle

L’Ecuyer, 2014

Satellite inputs include:
• Microwave radiance 

data,
• lidar, radar data
• Vis/IR imaging 

radiance data
• GRACE gravity and 

Altimetry
• Assessment of 

uncertainties



Water Cycle

Rodell et al., 2014

Energy cycle link:

E             LH 



Constrained Estimates 
Realistic?

L’Ecuyer, 2014
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GEWEX Data and Assessments Panel (GDAP):
Goal: Develop global observationally based products to allow 
independent water and energy cycle assessment (1984-2007).
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Results Landflux

Figure 1. Mean global land ET values for each dataset (a) with mean and standard deviation for each category (numbers).
Mean, relative interquartile range (IQR) and difference of mean to mean of reference datasets (Ref.) of the (b–d) diagnostic
datasets, (e–g) LSMs, (h–j) reanalyses, and (k–m) IPCC AR4 simulations. (n) Mean and (o) relative IQR of the reference
datasets and (p) difference of relative IQRs IPCC AR4 to reference datasets. Hatched areas in Figures 1d, 1g, 1j, and 1m
show a nominal 5%‐significance level as heuristic descriptive indicator (Wilcoxon Rank‐Sum test).
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datasets’ mean for selected basins (Mississippi, Amazon,
central European basins, Volga, Nile, Changjiang, Murray‐
Darling). The catchment definitions from Hirschi et al.
[2006] are used for the computation (see Figure 2, bottom).
Plots for individual seasons (May to June (MAM), June
to August (JJA), September to November (SON), and
December to February (DJF)) are provided in the auxiliary
material. Datasets are sorted into the four categories (sep-
arate bars). Additionally, ET estimated from the difference
between precipitation (P) derived from the Global Precip-
itation Climatology Project (GPCP) and runoff (R) from
local measurements is shown for multi‐year means (ET =
P − R is not generally valid for shorter time scales) in the
Mississippi, central European, Volga, Changjiang and
Murray‐Darling basins. The P − R values can be seen as a
long‐term constraint on ET (indicated with red lines where
available), although multi‐year anomalies of terrestrial
water storage cannot be excluded in some regions. Overall,
the P − R values are found to be close to the reference
datasets in the Mississippi, central European and Murray‐
Darling basins.
[12] The absolute intra‐category spreads are largest in the

Amazon basin, where the highest ET rates occur. The second
largest spreads are found in the Murray‐Darling basin during
SON and DJF, most pronounced in the IPCC AR4 simula-
tions (see auxiliary material). Comparing the four dataset
categories, the intra‐category spreads are similar. However,
the values can differ largely between basins. In the Chang-
jiang basin for example, the reanalyses and IPCC AR4
simulations display notably higher ET rates than the other
dataset categories (up to 0.75 mm/d on average during
MAM; see auxiliary material). The intra‐category spreads of
the IPCC AR4 simulations are much larger than the other
categories in the semi‐arid Nile and Murray‐Darling basins.
ET is water (precipitation) limited in these regions, and since
the calculation of ET in the IPCC AR4 simulations is based
on modeled precipitation (as compared to observed precip-
itation in the case of reference datasets), the high variability

of ET may be partly explained by the large uncertainties in
modeled precipitation.
[13] Despite overall similarities of the ET values within

these analyzed dataset categories, individual datasets stand
out in some regions and seasons. For example, during MAM
and in the annual mean, the NCEP reanalysis exhibits above
average ET values in the Mississippi, central European,
Volga and the Amazon basins. The GFDL IPCC simulation
stands out in the Amazon basin during SON (auxiliary
material). Note that outliers among the reference datasets
are not necessarily erroneous. Indeed, congruence across ET
datasets may be induced by the use of common data forcing
or model algorithms, rather than the correct representation
of ET, as several of the considered products are not inde-
pendent (see next section).

3.3. Cluster Analysis
[14] In order to study the inter‐relationship between

the individual datasets, a hierarchical cluster analysis of the
multi‐year mean ET values is performed (Figure 3). The
cluster analysis sorts the datasets into groups in a way that
the degree of association between two datasets belonging to
the same group is maximal. The criterion used for our
analysis is the Euclidean distance between datasets on each
land grid cell. Datasets in the same branch of the cluster tree
share similar global patterns. The strongest dataset cluster is
built by the GSWP simulations (with GS‐COLA being the
only GSWP model outside the cluster). Most of the IPCC
models also form a common branch in the cluster tree.
However, the diagnostic datasets and reanalyses are sepa-
rated into two different main branches of the cluster
tree. This indicates that these datasets, although based on
observations, exhibit distinct spatial patterns. All the
reanalysis datasets are constrained by different exogenous
data and some of them are on different main branches of the
tree. Note also that simulations using the same model but a
different forcing (Mosaic, driven with both GSWP and
GLDAS forcing) are separated into two main branches.

Figure 3. Hierarchical cluster analysis of global ET values, averaged over 1989–1995, using Euclidean distance matrix.
Diagnostic datasets (red), LSMs (green), reanalyses (yellow) and IPCC AR4 simulations (grey).
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Can we explain the interannual variability?
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Increase in Northern 
latitudes and “stable” in 
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interconnections
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Figure 3 | Characteristic response of land-surface conditions to ENSO. a–c, For the entire period 1980–2011, correlation coefficients between monthly
anomalies of the SOI and E (a), the SOI and soil moisture28 (b), and the SOI and NDVI (c; ref. 29). d–i, Average monthly anomalies of E (d), soil
moisture (e) and NDVI (f) during El Niño. El Niño months are defined as those with values of SOI within the first quartile of the SOI distribution; the value
of the 25th percentile of SOI is �0.6 (marked in Fig. 2a with a red line), and the number of months within the first quartile is 88. Average monthly
anomalies of E (g), soil moisture (h) and NDVI (i) during La Niña. La Niña months are considered as those with values of SOI within the fourth quartile of
the SOI distribution; the value of the 75th percentile of SOI is 0.7 (marked in Fig. 2a with a blue line) and the number of months within the fourth quartile is
95. E data come from the GLEAM experiment e2 that does not assimilate soil moisture observations; this is done to keep E independent from the soil
moisture observations used in b,e and h. Note that NDVI data are not used in the estimation of E either. Dotting represents statistically significant
(p < 0.05) correlations. Grey shading represents missing data (b,e,h) or regions with no vegetation (c,f,i). A one-month lag is introduced to the SOI to
account for the time of the atmosphere and land to respond to anomalies in atmospheric pressures (see Supplementary Fig. 13).

Ep is converted into E using a multiplicative evaporative stress factor derived from
observations of vegetation water content and estimates of root-zone soil moisture.
The latter come from a running water balance that describes the infiltration of
(observed) precipitation through the soil profile. The propagation of errors in the
water balance can be constrained by assimilation of satellite observations of surface
soil moisture28. For further information about GLEAM, see Supplementary Section
1. Here we use inputs to GLEAM that cover the entire satellite era (Supplementary
Table 1). Five combinations of inputs have led to five experiments and sets of
E that are referred to as e1–e5 (Supplementary Table 2). Experiment estimates
are validated against in situ measurements in Supplementary Section 4. Our
Clausius–Clapeyron expectation is based on a run with the seasonal climatology of
all inputs of e1, but with the seasonal climatology of air temperature superimposed
on the observed temperature trend at each pixel (see Supplementary Section 3).

Statistical significances of Pearson’s correlation coefficients and linear
trends correspond to p values below 0.05, and are calculated using a t -test and
a non-parametric Mann–Kendall test, respectively. Dotting in Fig. 1b, 2b–g and
3a–c is represented at 2� resolution to aid visualization when more than 50% of
the 0.25� pixel estimates within the 2� pixel are significant. Annual anomalies in
Fig. 1 are calculated as relative to the mean of the overlap period of all experiments
(that is, 1997–2007). Monthly anomalies in Figs 2 and 3 are calculated relative to
the multi-year mean of the corresponding month of the year (for example, the
anomaly in January 1980 is calculated by subtracting the mean of the 32 months of
January in the 1980–2011 record). To smooth outliers, a 3-month moving average
is applied to the SOI and to the monthly anomalies of E in Fig. 2a. A one-month
lag is introduced in the SOI in the calculation of correlations and anomalies shown
in Fig. 3 to account for the time taken by the atmosphere and land to respond to
the anomalies in atmospheric pressure (Supplementary Fig. 12). Spatial averages
are weighted by the area of each pixel.
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 Essential Water Cycle Climate Variables that are both 
currently feasible for global implementation and have a high 

impact on UNFCCC requirements-

Terrestrial: River discharge, Water use, Groundwater, Lakes, Snow cover, Glaciers 
and ice caps, Ice sheets, Soil moisture. 

Ocean Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Surface current,

Atmosphere Surface: Water vapour, Pressure, Precipitation, 
Upper-air : Water vapour, Cloud properties,



Potential Improvements to Water ECVs

• To better represent E&W cycles GCOS ECV set could be 
enhancement with:

• Land Surface temperature (radiative skin temperature);
• Turbulent heat fluxes (ocean and land);
• Precipitation/hydrometeor profile (latent heat release).

• Requirements for component fluxes need to be carefully 
engineered to be consistent with state variables;

• Provide requirements for ECVs with application in mind – 
process, budget and climate trend studies have different 
requirements but we need measurements to cover all 
applications.  



Conclusions

• ECV need to be (re) evaluated against their 
use

• GCOS monitoring principles support 
investigation of complex relations
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Work in Progress for PLAN

 Nov/Dec
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COP21
June July
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June July

Jan JanDec Dec
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GCOS Conference
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Engage science community

Launch 
of Plan

updated@17 March 2015

OOPC
14-17 April

Adrian@GCOS Sec (27 
Apr – 2 May)

PUBLIC REVIEW
 of REPORT Finalisation

Feb draft 
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