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The iImportance of observations

Credit: Victor & Kennel, Nature Climate Change, 2014.
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GCOS reception In community
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GCOS Releases Updated Implementation Plan for the Global
Observing System for Climate

@ GCOS

31 August 2010: The updated version of the Implementation Plan for the Global
Observing System for Climate in Support of the UNFCCC, including the revised list
of Global Climate Observing System (GCOS) Essential Climate Variables (ECVs),
has been published.

The Plan contains 138 recommended actions that include agents for
implementation, timelines, performance indicators and estimated costs. If fully
implemented, these actions will substantially improve the availability of the
observational information needed by all governments to understand, predict, and
manage their response to climate and climate change.

The 2010 Implementation Plan updates the original version from 2004 and
considers recent progress in science and technology, an increased focus on
adaptation, efforts to optimize mitigation and the need for improved projections. The
additional costs of implementing the plan are estimated at US$2.5 billion. The Plan
was submitted to the UNFCCC Secretariat for consideration by parties at the 33 rd
session of the UNFCCC Subsidiary Body for Scientific and Technological Advice
(SBSTA), which will be held in conjunction with the 16th session of the Conference
of the Parties (COP 16) in Cancun, Mexico, from 29 November-10 December 2010

read more: http://climate-l.iisd.org/news/gcos-releases-

updated-implementation-plan-for-the-global-observing-system-
for-climate/#more-41116

The impact and reception of GCOs and rts ECVs has a much wider impact
than originally thought (UNFCCC): it is now the key organization stressing the
importance of observations in climate science



The climate challenge
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Four Water, GEWEX
questions

® How can we better understand and predict

brecipitation variability and changes

® How do changes in the land surface and hydrology
influence past and future changes in water availability
and security

® How does a warming climate contribute to extremes
such as drought, floods and heatwaves, and what is the
role of the land surface in enhancing feedbacks!

® How can we improve the understanding of the balances
and budgets of energy and water?

Courtesy Graeme Stephens and Sonia Seneviratne
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lerrestrial observations need to be
integrated across time and space scales
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Observations need to be
iNntegrated across time and space
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Gross primary productivity (PgC yr-1 x 10)
Total carbon storage ( PgC)
Number of FLUXNET sites

Vegetation carbon storage (PgC)
Total forest/shrub area (km-2 x 10-5)
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Uncertainties in the global
pudget
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® The 20 uncertainties of the
atmospheric growth rate
have decreased from |.2 Pg C
yr~lin the 1960s to 0.3 Pg C yr
~I'in the 2000s due to an
expansion of the atmospheric
observation network,
® The 20 uncertainties in fossil
fuel emissions have increased
from 0.3 Pg C yr—l in the 1960s
to almost 1.0 Pg C yr—| during
the 2000s due to differences in
national reporting errors and
differences in energy inventories.



Uncertainties in land use

Land Use Emissions (PgC yr'1)
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Decadal mean values and standard deviations

Variable 1960s 1970s 1980s 1990s 2000s
Atmospheric COy (PgCyr*1 ; 0C/0t) 1.75 2.72 342 3.18 4.14

Mean of standard deviations (0.60) 0.61) (0.22) (0.18) (0.16)
Standard deviation of the means 0.61) 0.91) (1.21) (1.40) (0.82)
Land use emissions (PgCyr_l; Er) 1.16 1.28 1.42 1.15 0.89

Mean of standard deviations (0.76) (0.64) (0.65) (0.67) (0.63)
Standard deviation of the means (0.25) (0.11) (0.13) (0.23) (0.12)
Fossil fuel emissions (PgCyr~—!; ER) 3.09 4.76 5.53 645 7.89

Mean of standard deviations (0.15) (0.24) (0.30) (0.35) 0.47)
Standard deviation of the means (0.44) 041) (0.33) (0.24) (0.69)



The GEO Carbon Strategy

= G EO e increase the density of in situ networks, In particular

for stations and aircraft atmospheric observations,
ocean pCO2 observing systems using Voluntary
Observing Ships, and eddy covariance terrestrial
ecosystem flux measurement networks.

CARBON STRATEGY

e develop space measurements of global CO, and

CHy4 distributions, to fill the gap after GOSAT and
SCIAMACHY;

e develop spatial scaling technigues for pCO, and
land flux observations for application to wider
regions, using satellite information;

CED oo e undertake a decadal full basin survey of ocean

EARTH OBSERVATIONS

— carbon state, together with regular inventories of
forest biomass and soil carbon pools;



The GEO Carbon Strategy

' GEO

CARBON STRATEGY

Improve access to a continuous supply of mid-
resolution Earth observing (satellite) data, to monitor
areas of forest;

improve access to geospatial and temporal fossil fuel
emission information, including spatial-data
infrastructure;

assemble geospatial iInformation about use of wood
and food products, and continuously monrtored
dissolved and particulate carbon, Iif possible with age
information, for relevant rivers;

implement a data architecture that facilitates the
combination of different data-streams;

establish an International Carbon Office to operate a
program to produce annually updated regional and
global carbon budgets.
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APRIL 2014




Satellite missions for
CH4and CO»

(1) CO; missions
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Satellite, Instrument [Agencies) Spatial rasolution Swath 2002 | — | 2009|2010 2011 | 2012 20123 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021
ENVISAT SCLAMALCHY [£54 1800 km* 960 km

GOSAT TANSO-ETS [JAXANIES-MOE ~85 km® 520 km [2-point) ///////////////////A

OCO-2 (NASA) 2.9km® 10.6 km

TanSAT [CASMMOST.CMA, 2km*

OCO-3 (NASA) ~4 km* 16 km

GOSAT.2 TANSO-ETS UAXAMOENIES) ~8Skm? 632 km [S-point)
[Carbongat (ESA 6 km® 240 km

(2)CH, missions

023 | 2024 | 2025

Satellite, Instrument [Agencies) Spatial resolution Swath 2002| = | 2009 | 2010 | 2011 | 2012 2013 2014 | 2015 | 2016 | 2017 | 2018
ENVISAT SCIAMACHY [ESA 1800 km’® 960 km

GOSAT TANSO-FTS [JAXA-NIES-MOE ~85 km’ 520 km (3-point) /////////////////%

Sentinel SP TROPOMI (ESA! 49 km? 2600 km

GOSAT-2 TANSO-FTS UAXA-MOE-NIES) ~85 km? 632 km [S-point)

MERLIN [DLR-CNES 0.135 km (w)

[CarbonSat (£54 6 km* 240 km

MetOp Sentinel S (ESA-EUMETSAT) 49 km’ 2600 km

- Not operational - Operational %////%Ml::ion extension - Planned

Updated from CEQOS response to GEO



Essential Carbon Climate Variables that are both currently

feasible for global implementation and have a high impact on
UNFCCC requirements

Atmospheric (over land, seaand ice)
Composition:  Carbon dioxide, Methane, and other-long-lived greenhouse gases.

Oceanic

Surface: Ocean colour (forsbiological activity), Carbon dioxide partiall pressure, Ocean acidity,

Sub-surface: Nutrients, Carbon dioxide partial pressure, Ocean acidity, Oxygen, Phytoplankton; Marine
biodiversity and habitat properties

Terrestrial

Land cover (including vegetation typg), Fraction of absorbed photosynthetically active radiation (fAPAR),

Leaf area index (LAI), Above-ground.biomass, Soll carbongFire disturbance, Jerrestrial biodiversity and
habitat properties



The new [P

® Petter explanation in terms of science and
convention relevance, can we close the C-
budget, verification purposes!

® Do we need to include fluxes (GPR...GBP)?

® Fvaluate ECV's to relevance for carbon cycle:
new ECV fossil fuel emissions!




Hydrological ECVs

® [he GCOS ECV framework helps to address the
energy and water cycle and related science
questions;

® (lobal energy and water cycles can be balanced
within uncertainty of component fluxes;

® |t Is suggested to extended the GCOS ECV
framework to essential variables describing E&W
cycles;

Thanks to Jorg Schulz, EUMESAT



Different perceptions of the

olobal water cycle
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Satellite inputs include:

Microwave radiance
data,

lidar, radar data
Vis/IR imaging
radiance data

GRACE gravity and
Altimetry

Assessment of
uncertainties

tnergy Cycle

L'Ecuyer, 2014

Earth’s energy budget with balance
constraints imposed.

DSR
189+ 6
186 £ 5

185
Wild et al. (2013)

NEWS E&WC Climatology
Working Group (2014)

NALA ENEHGY AND WATER L fLLE STUDY

MEWs




Water Cycle
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Constrained Estimates

Realistic!
Optimized
OLR 238 239 1 2
OSR 100 102 2 5
DLR 344 341 3 /
DSR 190 186 4 6
E 75 81 6 /
P 77 81 4 /
SH 21 25 4 5

 Allin Wm?

L'Ecuyer, 2014



GEWEX Landflux

GEWEX Data and Assessments Panel (GDAP):

Goal: Develop global observationally based products to allow
independent water and energy cycle assessment (1984-2007).

Sink for

vapour
ATMOSPHERE

>-

Source of water

SOIL
VEGETATION

(Eu/a Courtesy of C. Jimenez and M. McCabe l"@vgt,,gjge -



Height

Results Landflux
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Can we explain the interannual variability?

Increase In Northern
latitudes and “‘stable” In
Southern
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Coupling ocean land
El Nino

Ocean evaporation



Correlations versus SOI

El Nifio anomalies

La Nifia anomalies

[he importance of
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Essential Water Cycle Climate Variables that are both
currently feasible for global implementation and have a high
impact on UNFCCC requirements-

Atmosphere Surface: Water vapour, Pressure, Precipitation,
Upper-air: Water vapour, Cloud properties,

Ocean Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Surface current,

Terrestrial: River discharge, VWater use, Groundwater, Lakes, Snow cover, Glaciers
and ice caps, Ice sheets, Soil moisture.



Potential Improvements to Water ECVs

® [0 better represent E&W cycles GCOS ECV set could be
enhancement with:

® | and Surface temperature (radiative skin temperature);
® [urbulent heat fluxes (ocean and land);
® Preciprtation/hydrometeor profile (latent heat release).

® Requirements for component fluxes need to be carefully
engineered to be consistent with state variables;

® Provide requirements for ECVs with application in mind —
process, budget and climate trend studies have different
requirements but we need measurements to cover all
applications.



Conclusions

® CV need to be (re) evaluated against their
use

® GCOS monitoring principles support
investigation of complex relations



Road Map for the new Plan (2015 — 2016)
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GLOBAL CLIMATE OBSERVING SYSTEM
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